|
Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts (usually uranium sulfate or uranium nitrate) are dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous" ('of the same physical state') The water can be either heavy water or ordinary (light) water, both of which need to be very pure. A heavy water aqueous homogeneous reactor can achieve criticality (turn on) with natural uranium dissolved as uranium sulfate. Thus, no enriched uranium is needed for this reactor. The heavy water versions have the lowest specific fuel requirements (least amount of nuclear fuel is required to start them). Even in light water versions less than 1 pound (454 grams) of plutonium-239 or uranium-233 is needed for operation. Neutron economy in the heavy water versions is the highest of all reactor designs. Their self-controlling features and ability to handle very large increases in reactivity make them unique among reactors, and possibly safest. At Santa Susana, California, Atomics International performed a series of tests titled The Kinetic Energy Experiments. In the late 1940s, control rods were loaded on springs and then flung out of the reactor in milliseconds. Reactor power shot up from ~100 watts to over ~1,000,000 watts with no problems observed. Aqueous homogeneous reactors were sometimes called "water boilers" (not to be confused with boiling water reactors), as the water inside seems to boil, but in fact this bubbling is due to the production of hydrogen and oxygen as radiation and fission particles dissociate the water into its constituent gases, a process called radiolysis. AHRs were widely used as research reactors as they are self-controlling, have very high neutron fluxes, and were easy to manage. As of April 2006, only five AHRs were operating according to the (IAEA Research Reactor database ). Corrosion problems associated with sulfate base solutions limited their application as breeders of uranium-233 fuels from thorium. Current designs use nitric acid base solutions (e.g. uranyl nitrate) eliminating most of these problems in stainless steels. == History == Initial studies of homogeneous reactors took place toward the close of World War II. It pained chemists to see precisely fabricated solid-fuel elements of heterogeneous reactors eventually dissolved in acids to remove fission products—the "ashes" of a nuclear reaction. Chemical engineers hoped to design liquid-fuel reactors that would dispense with the costly destruction and processing of solid fuel elements. The formation of gas bubbles in liquid fuels and the corrosive attack on materials (in uranyl sulfate base solutions), however, presented daunting design and materials challenges. Enrico Fermi advocated construction at Los Alamos of what was to become the world’s third reactor, the first homogeneous liquid-fuel reactor, and the first reactor to be fueled by uranium enriched in uranium-235. Eventually three versions were built, all based on the same concept. For security purposes these reactors were given the code name "water boilers". The name was appropriate because in the higher power versions the fuel solution appeared to boil as hydrogen and oxygen bubbles were formed through decomposition of the water solvent by the energetic fission products, a process called radiolysis. The reactor was called LOPO (for low power) because its power output was virtually zero. LOPO served the purposes for which it had been intended: determination of the critical mass of a simple fuel configuration and testing of a new reactor concept. LOPO achieved criticality, in May 1944 after one final addition of enriched uranium. Enrico Fermi himself was at the controls. LOPO was dismantled to make way for a second Water Boiler that could be operated at power levels up to 5.5 kilowatts. Named HYPO (for high power), this version used solution of uranyl nitrate as fuel whereas the earlier device had used enriched uranyl sulfate. This reactor became operative in December 1944. Many of the key neutron measurements needed in the design of the early atomic bombs were made with HYPO. By 1950 higher neutron fluxes were desirable, consequently, extensive modifications were made to HYPO to permit operation at power levels up to 35 kilowatts. This reactor was, of course, named SUPO. SUPO was operated almost daily until its deactivation in 1974. In 1952, two sets of critical experiments with heavy water solutions of enriched uranium as uranyl fluoride were carried out at Los Alamos to support an idea of Edward Teller about weapon design. By the time the experiments were completed, Teller had lost interest, however the results were then applied to improve the earlier reactors. In one set of experiments the solution was in tanks without a surrounding reflector. Solution heights were adjusted to criticality with D2O solutions at D/235U atomic ratios of 1:230 and 1:419 in the smaller tank and 1:856 to 1:2081 in the larger tank. In the other set of experiments solution spheres were centered in a spherical container into which D2O was pumped from a reservoir at the base. Criticality was attained in six solution spheres from 13.5- to 18.5-inch diameter at D/235U atomic ratios from 1:34 to 1:431. On completion of the experiment that equipment too was retired. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Aqueous homogeneous reactor」の詳細全文を読む スポンサード リンク
|